I più letti

Pubblicato il 12/20/2023

Sinterizzazione del carburo cementato: una guida pratica – Pt.1

Carburo, carburo di tungsteno, metallo duro, carburo cementato e molti altri marchi registrati sono spesso utilizzati indifferentemente per indicare un materiale molto diffuso per la produzione di utensili. 

Per essere precisi, questi termini non sono esattamente intercambiabili.

Il metallo duro, o carburo cementato, si riferisce a una classe di materiali costituiti da particelle di carburo disperse all'interno di una matrice metallica. Nella maggior parte dei casi, il carburo scelto è il carburo di tungsteno, ma possono essere aggiunti altri elementi formanti carburi, come il tantalio (sotto forma di TaC) o il titanio (sotto forma di TiC). 
La matrice metallica, spesso definita "binder" (da non confondere con la cera e i polimeri tipicamente utilizzati nella metallurgia delle polveri), è solitamente costituita da cobalto, ma vengono utilizzati anche nichel e cromo. Questa matrice agisce come un "cemento", tenendo insieme le particelle di carburo (da qui la definizione "carburo cementato").
Per formare il metallo duro, le polveri di carburo vengono macinate con il legante metallico per ottenere una polvere che viene consolidata mediante pressatura, estrusione o stampaggio a iniezione di metallo (“Metal Injection Molding”, MIM), seguito da sinterizzazione.
In questo senso, il carburo cementato non è un metallo ma, più propriamente, un materiale composito.

Leggi tutto l'articolo...

Pubblicato il 1/18/2024

Sinterizzazione del carburo cementato: una guida pratica – Pt.2

Nella prima parte dell'articolo abbiamo parlato delle polveri e delle classificazioni adottate per il carburo cementato, nonché dell'importanza di utilizzare un corretto ciclo di deceratura.

In questa seconda parte approfondiremo il processo di sinterizzazione, discutendo la differenza tra sinterizzazione in vuoto e “sinter-HIP” per il carburo cementato e le relative attrezzature impiegate.

Sinterizzazione

I forni in vuoto possono essere progettati per eseguire sia la deceratura termica che la sinterizzazione nello stesso impianto. In questo caso, i forni sono dotati di un sistema di intrappolamento della cera e di un box con ugelli calibrati per una distribuzione omogenea del flusso di gas. La distribuzione del flusso di gas è fondamentale per rimuovere efficacemente i vapori di cera dai pezzi e garantire un'uniformità di temperatura ottimale.

 

TAV VACUUM FURNACES HM Series - Sinter-HIP, equipaggiato per operare in sovrapressione di idrogeno.
È possibile notare il bruciatore elettrico per l’idrogeno in cima al forno.

 

Tuttavia, a volte si utilizzano forni da deceratura separati per migliorare la produttività e la pulizia del forno da sinterizzazione. In questo caso, anche se la deceratura viene generalmente completata a temperature inferiori a 500°C, i pezzi vengono riscaldati a temperature più elevate, prossime ai 1000°C, come fase di pre-sinterizzazione, per garantire una resistenza meccanica sufficiente tale da trasferire i pezzi al forno di sinterizzazione.

Leggi tutto l'articolo...

Ti piacerebbe vedere trattato un particolare argomento su questo blog?

Se hai un’idea per un articolo o hai semplicemente una domanda da farci, saremo lieti di ascoltarti.